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Abstract. Ant Colony System (ACS) applied to the traveling salesman
problem (TSP) has demonstrated a good performance on the small TSP.
However, in case of the large TSP, ACS does not yield the optimum
solution. In order to overcome the drawback of the ACS for the large
TSP, the present study employs the idea of subpath to give more infor-
mation to ants by computing the distance of subpath with length 3. In
dealing with the large TSP, the experimental results indicate that the
proposed algorithm gives the solution much closer to the optimal solu-
tion than does the original ACS. In comparison with the original ACS,
the present algorithm has substantially improved the performance. For
a certain graph, the solution performance has been enhanced up to 72.7
% by utilizing the proposed algorithm.

1 Introduction

Ant System(AS) is a meta-heuristic algorithm proposed by Dorigo et al.[1] that
has been inspired by the foraging behavior of ant colonies. Real ants are capa-
ble of finding the shortest path from a food source to their nest by exploiting
pheromone information. Ant System was applied to the complex combinato-
rial optimization problems such as the traveling salesman problem (TSP) and
the quadratic assignment problem (QAP). Currently many ongoing research ac-
tivities has been performed to investigate many different discrete optimization
problems like vehicle routing, sequential ordering, graph coloring, and routing
in communication networks.

In the present study, the Ant Colony System has improved the efficiency
of the existing ant system and it has been applied to analyze TSP. In context
with the Ant Colony System, the ants acting like agents perform parallel search
for the TSP and find a good solution. During this process, the ants are able to
exchange information each other indirectly but globally by using pheromone [5].
Each ant constructs the path for TSP with the iterative procedure to select a
next visiting city by jointly utilizing informations on the greedy heuristic and
the past experience. Several meta-heuristic search algorithm are applied to find
an optimal solution for TSP which is well known as a NP-hard problem.

The TSP can be expressed by a complete weighted graph G = (V, E). Here V
is a set of vertices and |V| = n, it represents all cities that the sales person has to
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visit. The E denotes a set of edges. Each edge (4, j) € E has a weight d;; which
represents a distance between any two cities ¢ and j (i, j € V). Consequently, the
TSP can be converted to a Hamiltonian circuit problem which find a shortest
path from a starting city by visiting each city only once and returning to the
starting city on a complete weighted graph. The TSP is classified as symmetric
TSP and asymmetric TSP. In the asymmetric TSP, the distance of the paired
vertices (i, ), d;;, could be different for the circulating direction. In other word,
there exists at least one edge which satisfies d;; # d;;. In the symmetric TSP,
di; = dj; is satisfied for every edges in E.

The original ACS algorithm is capable of finding an optimal solution for the
small size of TSP. The original ACS uses information on distance of adjacent
neighbors only. However, in case of the large TSP, ACS does not yield the opti-
mum solution. In order to overcome the drawback of the ACS for the large TSP,
the present study employs the idea of subpath to give more information to ants
by computing the distance of all possible subpath with length to construct a tour
for a solution. In dealing with the large TSP, the experimental results indicate
that the proposed algorithm gives the solution much closer to the optimal solu-
tion than does the original ACS. For a certain graph, the solution performance
has been enhanced up to 72.9 % by utilizing the proposed algorithm. In com-
parison with the original ACS, the present algorithm has considerably improved
the performance. The detailed discussion has been made for the existing and
proposed algorithm for the ant colony optimization to solve the large TSP with
a symmetry.

2 Ant Colony Optimization Algorithms

The Ant Colony Optimization(ACO) algorithm is easily applicable to handle
the TSP. In the ACO algorithm, the pheromone trails consist of the connecting
edges and 7;; represents the measure of possibility to visit a city j directly from
a city ¢. The heuristic information is expressed as 7;; = 1/d;;. The values of 7;;
and 7;; are stored at pheromone matrix and heuristic matrix, respectively. For
each ant, tours are constructed by the following procedure : (1) choose a start
city in random fashion and place an ant; (2) according to values of 7;; and n;;,
construct a path by adding a city that the ant has not visited yet; and (3) after
all cities have been visited, go back to the starting city and complete one path.
After all ants have completed their tour, they may deposit a certain amount of
pheromone according to the tour they have constructed [7,8].

The Ant System(AS) is a initially developed ACO algorithm and it is quite
easy to apply the TSP. However, due to the simple pheromone updating rule,
there is a certain tendency the AS leads to the local optima situation. Therefore,
the AS gives the optimal solution only for the small TSP. To improve the perfor-
mance, several extensions of the AS was devised. These extensions include elitist
AS, rank-based AS, and MAX-MIN AS. The main difference between the orig-
inal AS and these extensions is the way to update the pheromone[4]. The ACS
algorithm is the framework of this study and it is the ACO algorithm by adopt-
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ing the basic idea of the AS. Its performance has been improved by overcoming
the drawbacks of the AS. The ACS has been applied to various combinatorial
optimization problems and it has demonstrated a good performance.

The ACS proposed by Gambardella and Dorigo[9] differs from the AS in the
following features:

1. By using a more aggressive action choice rule, compared to the AS, the ACS
more actively exploits the search informations accumulated by the ants.

2. Pheromone evaporation and pheromone deposit take place only on the edges
belonging to the best-so-far tour.

3. Each time an ant uses an edge (4,j) to move from city ¢ to city j , it re-
moves some pheromone from the edge to increase the room for selecting the
alternative paths.

In the initial stage of the ACS with a given graph G = (V, E) and |V| = n, m
ants (m < n) are placed on m cities in random fashion. According to the tour
construction rule, each ant repeatedly chooses a next visiting city and constructs
a path. In this process, whenever an edge is added to a path, the local pheromone
updating rule is applied to update the pheromone on each edge. When the path
is constructed, the local search is applied to improve the constructed path. Then
the pheromone is updated only at the global optimal path with the minimum
length among all paths constructed so far. Figure 1 shows the ACS algorithm
for the TSP.

algorithm: ACS for TSP {

Initialize Data;
while (not terminate) {
place m ants at m cities;
repeat (for each ant)
apply tour construction rule to build a trail;
apply local pheromone updating rule;
until (construct a solution)
apply local search;
apply global pheromone updating rule;

Fig. 1. Algorithm: ACS for TSP
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2.1 Tour Construction Rule

If ant £ is located at city ¢, then a next visiting city j can be chosen according
to the pseudo-random proportional rule, given by equation (1).

. ) arg max;ecpnrk {ralna)”}, fa<aqo
J= i ; (1)
J, otherwise

where (3 is a parameter which determines the relative importance of pheromone
Ti; versus heuristic information 7, N;* is the set of the remaining cities to be
visited by ant k positioned on city i. g is a random variable uniformly distributed
in [0,1], qo is a parameter to satisfy the range, 0 < ¢o < 1, and J is a random
variable selected by the following probability distribution.
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In the equation (2), the probability to select an edge (i, 7) in a path is dependent
on the amount of pheromone, 7;; and heuristic information, 7;;. Each ant select
a city j as a next visiting city which has a large level of pheromone and a short
distance. If § = 0, the selection of a next city depends only on the pheromone
level, 7;;. Therefore, in the general situations, 3 > 1, according to reference[4],
a good performance is achieved at 2 < 5 < 5.

2.2 Local Pheromone Trail Update

Unlike the AS, the ACS uses a local pheromone updating rule. Whenever an
ant constructs a tour of the TSP and select an edge, the pheromone level for a
selected edge is updated by applying the local updating rule equation (3).

Tij = (1 = &)mij + &m0 (3)

where £ is the variable to satisfy the range, 0 < ¢ < 1. According to numerical
experiment, the best performance is achieved at £ =0.1 [4]. The value of 7
represents the initial pheromone level and the best performance is obtained at
70 = 1/(nC™"), where n is the number of cities in the TSP and C™" is the
length of a path constructed by the nearest-neighbor heuristic. In other word,
the pheromone level at each edge is initialized by the length of a path which is
constructed by the greedy method. By applying the equation (3), whenever an
ant selects an edge (4, j), its pheromone level, 7;; at a selected edge is reduced. As
a result, the once selected edge has the much lower probability to be selected by
the following ants. This treatment increases the probability to select the edges
that have not been visited yet and it prevents from a stagnation behaviour which
is a certain tendency to repeatedly choose an once selected edge. In other words,
ants do not converge to the generation of a common path. In this study, we only
consider symmetric TSP such that 7;; = 7;;.
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2.3 Local Search

The local search is basically included in the ACO algorithm. After all ants have
completed to find their own path, the locally optimum solution can be obtained
by 2-opt or 3-opt procedure which exchange two or three edges involved in the
constructed path. If this local search is applied to construct a path of the TSP,
the ACO algorithm together with a local search can improve the solution con-
structed by an ant[10]. In this proposed algorithm, a 3-opt method is employed.

2.4 Global Pheromone Trail Update

In the procedure of a Global Pheromone Trail Update, the pheromone update is
allowed only for the most optimum path among all constructed paths, according
to the equation (4).

Ti; = (1 — p)mj + pATib;, Y(i,j) € T (4)
where ATz»b; is the amount of pheromone to be added to edge (7,7) in the op-
timal path. C®® represents the length of global optimal solution. Thus, the re-
lation between the pheromone level and the optimum path length is expresses
as ATz»b; = 1/C% . The parameter p is the pheromone evaporation rate. The
deposited pheromone is decreased with increasing the pheromone evaporation
rate, p. In experiments, the best performance is obtained at p = 0.1.

3 Proposed Algorithm

The ACS algorithm adopts a global pheromone update as well as a local pheromone
update. If the global pheromone update is used, the information about the best
path among all constructed paths is delivered to ants which start to search
for the solution. On the other hand, the local pheromone update decreases the
pheromone on the edge which is just visited by ants. Therefore, this procedure
increases the probability to select the edges that have not been visited yet and it
can avoid a stagnation behaviour and increase a room to find a optimum path.
However, in case of a graph having a large number of vertices, it is difficult to
find the optimal path by only using the heuristic method.

In the ACS, m ants are placed randomly on m cities and start to search
for the optimal path. During the searching process using the local pheromone
updating rule, if the current visiting city is highly probable to be included in an
optimal path, the probability to find an optimum path is definitely increased by
constructing the path based on the current visiting city.

In the present study, to give the more precise information to ants for con-
structing a optimum path, the value of 7;; in equation (1) is not determined just
by using the distance of adjacent neighbor and it is determined by using the sub-
path s,, with length w, 1 < w < n. Here w refers the number of edges including
subpath. Using the information about the length of subpath s,,, we precompute
the length of all city 7 based subpaths which can be constructed from w number
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of edges, (i,7)(4,k)...(z,t). Then the next visiting city is selected as a city which
is located at the subpath with the minimum length among all possible subpaths.
In other words, in the searching process of a next visiting city j from the city i.
the tour path is constructed by selecting a city which minimize the value of s,,.
According to this algorithm, the equation (1) can be modified as follows:

- Jarg maxic i {ralna*?)’}, it g <o
=9 : ; ()
\ otherwise
Through numerical procedure of this algorithm, we need to make the list of the
nearest neighbor first, and then we have to find the minimum distance between
the neighboring cities in the list. For instance, if we assume the subpath length
w = 3, we first compute the distance of subpath (i, 7)(7, k)(k,t), dij + djr + di
for every city j adjacent to the current city i. Then the nearest neighbor list,
l; is arranged by sorting with an ascending order. As illustrated in the Figure
2, this procedure marginally increases the total execution time owing to its pre-
processing treatment. As implied in the local pheromone updating method rep-
resented by equation (3), it is quite important how to evaluate a initial value of
pheromone, 7y because it continuously influences the tour construction process.
In the original ACS, a initial value of pheromone is obtained by 79 = 1/(nC™").
Here C"™" is the length of path which is constructed by the Greedy method. On
the other hand, in the present proposed algorithm, a initial value of pheromone
is evaluated by the following expression (6) which has a governing parameter,
cev,

70 = 1/(nC*") (6)

Since C*" is generally smaller than C™", every path in this proposed algorithm
has the much higher level of initial pheromone. Moreover, using equation (3)
together with a initial value of pheromone, 7y governed by the subpath infor-
mation C*", the present proposed algorithm can search the adjacent neighbors
more precisely.

If the original ACS is applied to the TSP with large number of cities, it
is very difficult to find an optimal solution. In the search procedure of optimal
solution for the TSP, if the correct and optimal algorithm is applied, the shortest
path is quickly found at the beginning of the search process. Otherwise, the
optimum path could be constructed by gradually improving the solution through
the numerous iterations. However, in case of a large TSP, it is nearly impossible
to construct a optimal path by applying the iterative search for all possible paths.
Therefore, it is necessary to include cities in a path which are quite probable to
construct the optimal path. By setting the initial value of pheromone large, the
proposed algorithm constructs the path much closer to a optimal solution at the
initial stage than does the original ACS algorithm. In other words, the proposed
algorithm can increase a probability to find an optimal path at the beginning
of path construction stage by choosing a nearest neighbor with the subpath
information. However, it is necessary to note that, if the length of subpath, w,
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is set to a quite large value, it is susceptible to be a local minima. If the length
of subpath, w, is set to a small value, then there is no difference with original
ACS and the algorithm performance is greatly reduced. Therefore, it is very
important to set s, with the proper value. Figure 2 shows the schematics of
proposed algorithm. Here the italictype parts represent the major improvements
against the original ACS.

algorithm: Proposed ACS for TSP {

preprocessing steps:
construct a distance matrix;
construct a nearest neighbor list by Sw;
Initialize Data;
while (not terminate) {
compute 7o with S : 70 =1/(nC°");
place m ants at m cities;
repeat (for each ant)
apply tour construction rule to build a trail;
apply local pheromone updating rule;
until (construct a solution)
apply 3-opt local search;
apply global pheromone updating rule;

Fig. 2. Proposed Algorithm

4 Experimental Results and Discussion

The proposed algorithm has been implemented into the aco-code in reference
[11]. For the validation, we used the graphs in the TSPLIB library [12]. The ex-
periments on the proposed algorithm have been performed at Enterprise RedHat
2.1 (PentiumIV 1.7 GHz, 768MB). For each test, we have chosen the parameters
which were proved to yield the optimal solution from the previous experiments.
These problem parameters are given as £ = 0.1,p = 0.1,8 = 2,990 = 0.9 and
m = 10. The initial value of pheromone in the equation (6) is evaluated by using
70 = 1/(nC*3) and the information of subpath is obtained from s3. For each
ant, 100 seconds of CPU time are allocated for one search process and the path
search is repeated 10 times. For each graph, the optimum and averaged value is
obtained from the results of 10 executions.

Table 1 shows the results obtained from the original ACS and the proposed
algorithm for the graphs with less than 1000 cities for the length of subpath
3, s3. Here, ’Instance’ represents the graph name in TSPLIB and "Known op-
timal’ represents the known length of the optimal path for the corresponding
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graph. The ’Best’ and "Average’ of original ACS denote the optimal and aver-
aged lengths calculated by the Dorigo’s algorithm[8]. On the other hand, the
'Best’ and ’Average’ of proposed ACS corresponds to the optimal and averaged
lengths computed by the proposed algorithm. The 'NNChangeRate’ in the last
column represents the changing rate in the next visiting city which is determined
by the proposed algorithm with sz, versus to the original ACS. As shown in the
experimental results, in case of the graphs with small number of cities, the origi-
nal and proposed algorithm can find the optimal solution within the fairly short
period.

Table 1. Experimental results for the graphs with less than 1000 cities

Instance| Known | Original ACS | Proposed ACS | NNChange
Optimal| Best [ Average | Best | Average| Rate(%)
att 532 | 27686 |27686(27704.28|27686|27705.88 36.47

d 198 | 15780 |15780|15780.19|15780| 15780.1 23.23
lin 318 | 42029 |42029|42086.48|42029(42087.58 19.18
pcb 442 50778 |50778|50835.83|50778|50831.57 13.57
rat 783 | 8806 | 8806 | 8819.88 | 8806 | 8821.01 24.65

d 1291 | 50801 |50801 50874.87|50801 50863.21 7.20

In case of the graph att532, experimental results obtained by the proposed algo-
rithm indicate that the changing rate of the next visiting city is more than 35%,
compared to the original ACS. This situation can be occurred when the graph
has the more complexity and the large number of edges. Since the generated
subpaths in this complex graph situation are rapidly increased, the possibility
to change the next visiting city becomes higher. On the other hand, in case of
the graph d1291 having more than 1000 cities and simple edge connection among
cities, the NNChangeRate is only 7% because the probability to change the next
visiting city becomes lower for the simple graph situation.

However, in case of the graph with more than 1000 cities and high complexity,
it is quite seldom to find an optimal solution by employing the original ACS.
Table 2 illustrates the experimental results of the graphs with more than 1000
cities. As shown in Table 2, in case of the large graph, the proposed algorithm
finds the solution much closer to the optimal solution than does the original
ACS. The 'ITmproved Rate’ at the rightmost column represents the improvement
rate of the searching path constructed by the proposed algorithm, compared
to the original ACS. This improvement rate is evaluated by the relation, 100 -
{(c-a)/(b-a) * 100}. Experimental results simulated by the proposed algorithm
indicate that the only 0.5% improvement is obtained for the graph, rl 1889 and
the 72.7% improvement is for the graph, r1 5915. Even if the improvement rate
has a certain level of sensitivity for the specific graph, experimental results for
most of the large graphs show that the proposed algorithm yields more than
30% of improvement. These experimental results suggest that, in dealing with
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the large and complex graph, the proposed algorithm is much better than the
original ACS in terms of efficiency and performance improvement.

Table 2. Experimental results of the graphs with more than 1000 cities

Instance| Known Original ACS Proposed ACS ||NNChange|Improved
Optimal(a)[Best(b)[ Average |Best(c)] Average || Rate(%) | Rate(%)

d 1655 62128 62153 | 62357.89 | 62147 | 62352.75 11.0 34.0

fnl 4461 | 182566 |186492|186986.05|186361|187032.61 29.75 3.4

pcb 3038| 137694 | 139098 |139749.38| 138933 (139661.64 26.37 21.8

rl 1889 316536 317349 (319232.81|317345|318849.68 20.12 0.5

rl 5915 565530 |576654 |581050.39|575837|581286.21 21.05 72.7

u 1432 152970 |153204 (153579.93|153131(153612.97 1.47 31.2

vm 1748 | 336556 |336765|337531.19|336679|337641.23 25.69 41.2

pr 2392 | 378032 |378838|380344.11|378654|380418.47 20.03 32.8

In general, the proposed algorithm shows a good performance for the most
of the graphs. However, as shown in Table 2, the performance is still sensitive
to the characteristics of each graph. Since the original ACS basically adopts
the greedy heuristic algorithm to search for an nearest neighbor, the search
process to find a optimal path could be highly influenced by the distance from
the nearest neighbor. Thus, the performance of the ACS algorithm could be
improved by changing the value of parameters according to the size of graph
or number of edges in the graph. In case of the graph ul432, NNChangeRate
is just 1.47% but the solution obtained by the proposed algorithm is up to
31.2%. This result implies that, in this particular graph, the performance can be
significantly improved by changing few cities in visiting order. In contrast to the
graph ul432, the graph fnl 4461 is another extreme case. In case of the graph
fnl 4461, NNChangeRate is nearly 30% and the improved rate is only 3.4%.
Since a changing rate of the nearest neighbor list is quite high according to the
information on subpath ws, it can be speculated that a graph fnl 4461 could
have the much higher complexity. Therefore, in this type of a complex graph,
any meta-heuristic algorithms may yield the similar trend for the solution of
TSP. The experimental results suggest that the proposed ACS algorithm could
be improved by varying the subpath length, w according to the characteristics
of graphs.

5 Conclusion

In this study, we propose an algorithm which improve the performance of the
original ACS for the TSP. For the construction of tour, the original ACS search
the adjacent cities first, then select a city with the minimum distance as the
next visiting city. However, in order to optimally choose the next visiting city,
the proposed algorithm uses the information on subpath such that the distance
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of all possible subpaths with length w are precomputed and select a city having
the much higher probability to construct a optimal path. If the length of subpath,
w is long, there is a possibility for stagnation. Therefore, it is quite crucial to
select the proper subpath length, w. In the ACS, the information on subpath
Sy highly influences the initial value of pheromone, 7. Since the value of 7
is continuously used in the updating process of local pheromone, it eventually
influences the tour construction process.

In case of the graphs with small number of cities, the original and proposed
algorithm can find the optimal solution within the fairly short period. For the
large TSP, with the same CPU time, the proposed algorithm finds the solution
much closer to the optimal solution than does the original ACS. Even if the
improvement rate has a certain level of sensitivity for the specific graph, exper-
imental results for most of the large graphs show that the proposed algorithm
enhances the improved rate more than 30%. For a certain graph, the solution
performance has been improved up to 72.7% by utilizing the proposed algo-
rithm. The experimental results suggest that the proposed ACS algorithm could
be improved by varying the subpath length, w according to the characteristics
of graphs.
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